Stealth

Frank B. Brokken*
(f.b.brokken@rc.rug.nl)
Computing Center, University of Groningen

June 2003

Introduction

Hontafién (2001) starts his chapter on ‘System Monitoring and Auditing’ with
the following sentence:

Monitoring your system for abnormal behavior is an essential task
in both system administration and information security

The normal tasks performed by computers may be interrupted, altered or sup-
pressed by intruders gaining access to these computers. By keeping a close
watch on what’s happening, attempts to invade computer systems may be de-
tected and possibly prevented. As an ‘early warning’ signalling system, and as
a damage-reporting facility, programs that automatically check the log-files of
computers are therefore very useful.

In a similar vein, Garfinkel and Spafford (1996) discuss various ways to prevent
or minimize the damage that may result from people trying to attack computer
systems. Among other things, they discuss the need for backups, they cover
possible routes intruders may take to invade computer systems, and they discuss
the need for auditing and logging as well.

When a computer becomes the target of an attack, basically two things may
happen:

e First, the attacker may be interested in the mere disruption of the normal
operations of the computer that is attacked. Denial of Service attacks

*The author would like to thank Hans Gankema and Kees Visser, both at the Computing
Center of the University of Groningen, for their valuable remarks leading to the construction
of STEALTH.

fall into this category as it is the attacker’s intent to degrade facilities
normally offered by the attacked computer.

e Secondly, the attacker may be interested in gaining access to a computer.
Access may be pursued for various reasons: installing own facilities (ftp-
servers, game servers); using resources made available by the company or
organization owning the attacked computer, such as fast Internet access;
using the computer as a platform to perform further attacks (thus covering
the intruder’s tracks, giving a false impression of the origin of attacks of
yet other computers).

Although denial of service attacks are a nuisance, most systems administrators
are more worried about the possibilities intruders have when they actually gain
access to the computers being maintained and controlled by the administrators.
Once an intruder has gained access to a computer it’s not clear what the attacker
may have accomplished, it’s unclear which software may have been modified,
and it’s not evident what backdoors or possible traps the intruder may have
installed. Backups, of course, don’t offer any relief, as the backup may actually
have saved the modifications inflicted upon the system by the intruder.

Therefore, software has been developed allowing the systems administrator to
detect changes to the computer’s software. These solutions are discussed in the
context of topics like ‘file integrity auditing’ (Hontanén, 2001) and ‘Integrity
Management’ (Garfunkel and Spafford, 1996).

The basic idea behind these file integrity monitoring tools is that an intruder,
gaining access to a computer system, will change the system’s software. Changes
may involve removal of, additions to, or modifications of available software.
Once the intruder has gained access to a system and starts to modify things,
there’s no telling what may have happened, and the sooner changes are detected,
the better.

The Sans institute (http://www.sans.org) offers an overview of existing soft-
ware which may be used for integrity checking. According to an overview pre-
sented by Sans (http://www.sans.org/rr/audit/aide.php) the following file
integrity checking systems are currently available:

e Tripwire (http://www.tripwire.com): Tripwire is a policy driven file
system integrity checking tool that allows system administrators to verify
the integrity of their data. Tripwire compares properties of designated
files and directories against information stored in a previously generated
database.

e ['check (http://sites.netscape.net/fcheck/): Fcheck is a stable open-
source Perl script that provides host intrusion detection and policy enforce-
ment on servers. The script uses comparative system snapshots based on
file checksums - very similar to Tripwire, but with a simpler design.

e Filetraq (http://filetraq.xidus.net/): FileTraq is a shell script de-
signed to be run periodically from the root crontab. Each time, it com-
pares a list of system files with the copies that it is keeping. Any changes
are reported in diff or patch file style, and dated backup copies are pre-
served.

e OsirisScripts http://www.shmoo.com/osiris/: Simple Perl scripts for
generating a catalog of MD5 hashes of executable files and then comparing
the catalog to new snapshots. Compares based on missing or additional
files, differing MD5 hashes, modification dates, and file attributes.

o Sentinel (http://zurk.netpedia.net/zfile.html): Sentinel is a fast
file/drive scanning utility similar to the Tripwire and Viper.pl utilities.

e Sherpa (http://www.nbank.net/ rick/sherpa/): Sherpa is a Perl tool
for configuring and then checking system security. It allows an admin to
maintain a custom database of file and directory permissions and owner-
ship attributes as local needs dictate.

o Aide (http://www.cs.tut.fi/ rammer/aide-0.7.tar.gz): Aide (Ad-
vanced Intrusion Detection Environment) constructs a database of the
files specified in aide.conf, aide’s configuration file. The Aide database
stores various file attributes including: permissions, inode number, user,
group, file size, mtime and ctime, atime, growing size and number of links.
The binary, configuration file, policy file and database of the file integrity
checker itself can be manipulated. In case of Aide the policy file and
configuration file are identical. It provides a method for transferring the
configuration file and database to a floppy disk for increased security.

When studying the characteristics of these file integrity checkers, several things
spring to mind:

e First, the data summarizing the state of the information that must be
protected are commonly stored on the actual systems that undergo the
integrity check. This potentially poses a serious problem, as intruders
may be able to tamper with this information in such a way that it won’t
reflect the changes made by the intruder.

e Secondly, as far as management is concerned, each system needs its own
integrity checker. This places an extra burden on the often already over-
sized task load of the systems administrators.

e Thirdly, most integrity checkers allow a certain set of snapshots to be
taken. For example, Aide allows many attributes and many cryptograph-
ical summary statistics to be computed, but supports no other features.
This is unfortunate, as it puts a serious burden on the ingenuity of the
developers of these integrity checkers (did I choose the right set and a

complete set of gadgets?) and these integrity checkers cannot adapt easily
to newer tools, producing newer statistics, that may become available in
the future.

e Fourthly, most integrity checkers themselves are stored on the systems to
be protected. Usually, at some point or location, they leave information or
traces behind that they are there, such as crontab entries, binaries, logfiles,
etc. This information may be used by intruders to actually prevent the
integrity check from happening: crontab entries may be modified, data
bases may be restored, binaries could be modified, etc.

In order to remedy these flaws which are, at least to some extent, present in cur-
rent file integrity checkers, the STEALTH program was developed. Specifically,
STEALTH provides a file integrity checking facility that:

e Leaves no trace on the computer being checked;
e Is very difficult to detect or evade by intruders;
e Cannot be modified by intruders;

e Can be used to perform integrity checks on many computers, without the
associated maintenance burden.

e Can be used to check many different types of computers and operating sys-
tems without the need to install STEALTH on these computers. Porting
STEALTH to these different computers and operating systems systems
should be no problem, but STEALTH can be used on such systems with-
out actually completing one single port.

STEALTH - Concepts

The philosophy behind STEALTH is that a file integrity checker can be installed
on a single (central) computer, which computer may then use secure connections
to communicate with other computers. Controlled by STEALTH, these other
computers will then perform their own integrity checks.

Considering the stealthy nature of this process, in which the controlling com-
puter (running STEALTH) is almost always invisible to the computers that are
being controlled (and when visible, it’s only indirectly visible), STEALTH is an
apt name for such a program.

While finding the name STEALTH was rather easy, it turned out to be kind of
hard to find an appropriate expansion for its name. But here it is. STEALTH
can be expanded to:

Ssh-based Trust Enforcement Acquired through
a Locally Trusted Host.

The following key terms are used in this expansion:

e Ssh-based: the computer on which STEALTH has been installed commu-
nicates with other computers using an encrypted (ssh) connection. Usually
the computers being scanned (called clients) and the computer initiating
the scan (called the controller) are different computers. Clients should ac-
cept incoming ssh-connections from the controller. The controller doesn’t
have to accept incoming ssh connections at all (and it shoudn’t, probably).

o Trust Enforcement: The whole purpose of a file integrity scan is to be
able to trust the integrity of the inspected computer’s software. So, by
performing file integrity checks, we enforce trust on the clients, due to the
observed integrity of their files.

e Locally Trusted Host: clients apparently trust their controllers, as they
allow the controller to open ssh-connections to them. Clients therefore
locally trust their controllers. Hence, Locally Trusted Host.

As the controller is able to access clients using an ssh-connection, all communi-
cation between the controller and the clients is secure, and all commands per-
formed on the clients, on behalf of the controller, ‘leave no trace’ on the clients.
As there are no sediments on the clients subsequent to integrity scans, intruders
will have no clue about any integrity check that has ever been performed on the
clients. STEALTH truly has stealthy characterstics.

On the other hand, the controller’s security can be wvery strict: it doesn’t have
to accept any inbound connections, and normally it needs to accept only two
outbound connections: it should allow outbound ssh connections to its clients,
and (normally) it should allow outgoing e-mail connections. The e-mail connec-
tions are used to inform the involved clients’ systems administrators about any
changes that were observed.

For each client whose file integrity is checked by stealth at least one policy file
is constructed. The policy file determines which actions should be taken during
the integrity check. Multiple policy files may be associated with a single client,
defining various levels of integrity scans: e.g., frequently performed superficial
scans and incidentally performed thorough scans.

The policy file contains commands which are executed on either the controller
or on the clients. Usually, only a few or lightweight commands are run on the
controller. However, most commands are run on the clients. This approach
minimizes the controller’s load, and affects clients only in relation to their own
file integrity. Any computer, even an old or cheap one, can still function perfectly

well as a STEALTH controller, controlling the file integrity of many other, more
up-to-date or expensive computers.

This is what happens when STEALTH is run to perform a client’s integrity
check:

e First, the client’s policy file is read. The policy file defines the actions to be
performed, and the values of several variables that are used by STEALTH.

e Secondly, the controller opens a command shell at the client using ssh,
and it opens a command shell on the controller itself using sh.

e Thirdly, commands defined in the policy file are executed in their order of
appearance. Examples will follow. Normally, return values of these com-
mands are inspected. Non-zero return values will terminate STEFALTH
prematurely.

e Finally, the commands that are requested in the policy files normally pro-
duce output. Differences between the output generated during subsequent
runs of STEALTH are logged on a report file, to which information is al-
ways appended. When this happens, the differences can be e-mailed to a
particular systems administrator for further handling. STEALTH follows
the ‘dark cockpit’ approach in that no e-mail is ever sent when no changes
are detected.

Many (if not all), integrity tests can actually be performed using the unix
(Linux, Cygwin on MS-Windows systems) find program, where find itself may
start programs like 1s, md5sum or even its own -printf method to produce
file-integrity related statistics. As these programs are practically universally
installed, their existence, nor their use will cause any suspicion. Of course,
intruders may modify these tools. Fortunately, it is rather simple to check for
this unwelcome situation.

STEALTH - Practical Use

Currently, STEALTH may be obtained from the University of Groningen’s ftp
server. The STEALTH tarball is located at:

ftp://ftp.rug.nl/contrib/frank/software/linux/stealth

The tarball contains STEALTH'’s sources, as well as its user guide.

After installing STEALTH, at least one policy file must be constructed for each
client to be checked by STEALTH. The construction of policy files is briefly

summarized in the next chapter. It is covered more extensively in STEALTH’s
user manual, which is part of STEALTH’s distribution.

In this chapter STEALTH’s practical use is illustrated, assuming the existence
of a computer acting as a controller (here given the generic name control.domain)
and a client (using the generic name client.domain). The steps to take to ac-
tually start using STEALTH are now discussed. This will offer further insight
into the way STEALTH operates.

The following steps must be taken:

e At client.domain an account must be defined accepting incoming ssh
connections from control.domain. Since using STEALTH is all about
trust, it’s probably safe to grant root-access rights to client .domain from
control.domain. This allows control.domain to perform every required
integrity check, without running against restricted access barriers.

e STEALTH can now run. It will produce output, which will inform the
systems administrator about the integrity status of client.domain’s files.
The kind of output that is produced is discussed in some detail in this
chapter.

e Control.domain may perform integrity checks of client.domain at cer-
tain moments in time (e.g., using a periodic command scheduler, like
the unix program cron). To reduce the predictability of these checks,
STEALTH offers the possibility to postpone the actual onset of an in-
tegrity scan by a randomly chosen delay, thus making it harder to detect
at client.domain that its files are being integrity-checked.

The abovementioned steps are now be discussed in more detail.

Granting access

Access to client.domain by control.domain is granted via the ssh protocol.
Client.domain will normally allow control.domain to establish a connection
without the need to identify itself using a user name and password.

This is realized using public key technology. The SSH-documentation can be
consulted for details. Also, the STEALTH user manual contains information
about how to set up such a trusted access route from control.domain to
client.domain.

It is stressed here that only a trusted access route from control.domain to
client.domain is required. As far as STEALTH is concerned, there is abso-
lutely no need for allowing any incoming connection to control.domain. It is
strongly advised not to allow any incoming connection to control.domain. By

denying incoming connections, the security of control.domain (and by impli-
cation: of client.domain) is enhanced.

Once an ssh-connection, not requiring the specification of a password, can be
established from control.domain to client.domain, client.domain’s policy
file living at control.domain (e.g., the file client.pol) may now be given a
line specifying how to establish this connection. E.g.,

USE SSH /usr/bin/ssh root@client.domain -q

Initially the ssh connection between client.domainand control.domainshould
be established ‘by hand’ (i.e., not using STEALTH). After this initial connec-
tion, cient.domain’s ssh-key fingerprint will be available in control.domain’s
list of known hosts.

Now that an ssh-connection can be established, the next step can be performed:
actually running STEALTH.

Running STEALTH

When STEALTH is run for the first time, it will create an initial report file at
a configurable location on control.domain.

Assuming control.domain’s policy fileis /root/stealth/client.domain.pol,
STEALTH is simply started using the command:

stealth /root/stealth/client.domain.pol

This will show, to the standard output, all executed commands, initializing
various log files during the process. Usually commands will target particular
sections of client.domain’s file system, like all setuid / setgid files that live on
client.domain.

The results of the actions performed by STEALTH are now e-mailed to a con-
figurable e-mail address. The e-mail may be sent directly, or via a script, which
may be used to, e.g., encrypt the report before sending it out.

The contents of the mailed report, reporting the initialization of the log files, is
simply a date/time stamp and a list of files which are initialized. For example:

STEALTH (1.11) started at Mon Apr 7 20:42:31 2003

Check the client’s md5sum program

Initialized log on local/md5

checking the client’s /usr/bin/find program
Initialized log on remote/binfind

suid/sgid/executable files uid or gid root on the / partition
Initialized log on remote/setuidgid

configuration files under /etc
Initialized log on remote/etcfiles

The initialized report files

During STEALTH s first run, initial log files are created in the (configurable) di-
rectory /root/stealth/client.domain. The initialization report mentions the
files that were created. Note that these log files are not stored on client.domain
itself, but only on control.domain. Therefore, they are inaccessible for intrud-
ersof client.domain. Also, these intruders will find no traces on client.domain
which may suggest that every now and then an integrity scan is performed.

The way these logs are generated is highly configurable. Usually they will
contain combinations of checksums, filenames, and other statistics that are vi-
tal to the system’s integrity. For example, checking the setuid/setgid files on
client.domain might result in an overview containing lines like:

030£3£84ec76a8181ccal87c4bab55ea /bin/login
b6c0209547d88928£391d2bf88af34aa /bin/ping
3¢99ea0425c6e0278039e16478d2fb57 /usr/X11R6/bin/xterm
4c17203d7d91ec4946dea2f0ae365d5b /sbin/unix_chkpwd

Depending on the way the policy file was constructed, several of these log files
may have been generated. Their initial creation (usually at STEALTH’s first
run) establish a baseline integrity status of client.domain. Having created this
baseline status, STEALTH is now ready for its operational task: monitoring the
file integrity of client.domain.

Re-running STEALTH: no modifications observed

When STEALTH is run again, it will update its log files. If nothing has changed,
the log files will remain unaltered. The new run will, however, produce some
new info on the file /root/client.domain/report:

STEALTH (1.11) started at Mon Apr 7 20:42:31 2003

Check the client’s md5sum program
Initialized log on local/md5

checking the client’s /usr/bin/find program
Initialized log on remote/binfind

suid/sgid/executable files uid or gid root on the / partition
Initialized log on remote/setuidgid

configuration files under /etc
Initialized log on remote/etcfiles

STEALTH (1.11) started at Mon Apr 7 21:12:16 2003

Note that just one extra line was added: a timestamp showing the date and
time of the last run. The systems administrator may reduce/remove the report
file every once in a while to prevent it from growing unlimitedly.

Re-running STEALTH: modifications were observed

Basically, three kinds of modifications are possible: additions, modifications,
and removals. The effects of these changes on STEALTH s output are illustrated
below.

For example, the following changes were made to the client’s files:

e anew /bin/login program was installed
e the program /sbin/unix _chkpwd was removed

e a program /usr/bin/setuidcall was installed
Next, STEALTH was run again. This produced the following:

e New lines were added to the report file /root/client.domain/report:

STEALTH (1.11) started at Mon Apr 7 21:37:44 2003

suid/sgid/executable files on the / partition

10

ADDED: /usr/bin/setuidcall

< 945d0b8208e9861b8f9f2de155€619f9 /usr/bin/setuidcall
MODIFIED:

< 7£96195d5f051375fe7b523d29e379c1 /bin/login

> 030£3f84ec76a8181ccal87c4ba6b5ea /bin/login
REMOVED:

> 4c17203d7d91ec4946dea2f0ae365d5b /sbin/unix_chkpwd

Note that all changes were properly detected and logged in the file
/root/client.domain/report.

e This report was sent by e-mail to the proper system’s administrator.

e Thefile /root/stealth/client.domain/remote/setuidgid was recre-
ated, containing the overview of all actual setuid/setgid files. However,
the old file is still available as the file

/root/stealth/client.domain/remote/setuidgid.20030407-213744

Of course, over time these old files will be considered obsolete. Whenever ap-
propriate, time-stamped log files may be removed. In any case, they are not
used by STEALTH, as STEALTH only uses the most recent log files.

Calling STEALTH automatically and unpredictably

In order to automate the execution of STEALTH, it can be started by a periodic
command scheduler, like the unix command cron. Assuming the availability of
the cron program, automatically running STEFALTH can be realized by creat-
ing, again on control.domain, the file /etc/cron.d/stealth. This file may
be given a line like:

2,17,32,47 * * * * root test -x /usr/sbin/stealth && \
/usr/sbin/stealth -q /root/stealth/client.pol

This will cause STEALTH to start at two minutes after every quarter of an
hour. Alternate schemes are left to the reader to design.

In general, however, randomly occurring events are harder te detect. Therefore,
STEALTH may start its job at a randomly chosen point in time. For this,
STEALTH’s -i flag (or —-random-interval) can be used. This flag expects an
argument in seconds (or in minutes, if at least an m is appended to the interval
specification). Somewhere between the time STEALTH starts and the specified

11

interval period the integrity scan will commence. For example, the following
two commands have identical effects: the scan is started somewhere between
the moment STEFALTH was started and 5 minutes later:

stealth -i 5min -q /root/stealth/client.pol
stealth -i 300 -q /root/stealth/client.pol

Once again, note that no information about or related to STEALTH is available
on client.domain. Only when the integrity scan itself takes place something
will be visible: an ssh-connection from control.domain, and a command (like
find) is momentarily executed. After a short while, the ssh connection has dis-
appeared and nothing at client.domain provides any clue about any integrity
check that was ever performed. No log files, no report file, no programs, no
cron-job specifications.

STEALTH - Configuration

As noted earlier, STEALTH reads policy files to determine the actions it should
perform. Each policy file is uniquely associated with a particular host. However,
for each host multiple policy files may be defined. In that case, each policy file
will define a certain set of checks to be performed. This way, it is easy to perform
a set of less tasking tests frequently, and more thorough tests occasionally.

In this section the main topics related to constructing policy files are covered.
For a full discussion, the reader should consult the STEALTH user guide.

A policy file consists of three types of commands. It may also contain comment,
improving readability for human readers. The three types of commands are:
define directives (starting with the keyword DEFINE), use directives (starting
with the keyword USE) and commands. These three types of commands are
discussed in some detail next.

DEFINE directives

DEFINE directives are used to reduce typing. Basically, a DEFINE directive is
an abbreviation for a longer piece of text, albeit that they were given some
intelligence. The generic form of the DEFINE directive looks like this:

DEFINE symbol that what is defined by ‘name’

12

The symbols that are defined by DEFINE directives may consist of letters, digits
and the underscore character (-). There is no restriction on the characters that
are used in the definition of the symbol. The definition is, however, trimmed of
initial or trailing blanks.

Having defined symbol in a DEFINE directive,

e symbol may be used in USE directives and commands (see below).

o The text following DEFINE symbol is then inserted literally into the USE
directive or command.

e To apply a symbol that’s defined by a DEFINE directive, the form ${symbol}
must be used. E.g., ${EXECMD5}.

e DEFINE symbols can be used in other DEFINE symbols. However, it is the
responsibility of the author of the policy file to make sure that (indirect)
circular definitions are avoided.

Examples:
DEFINE SSH /usr/bin/ssh root@client.domain —-q
DEFINE EXECMD5 -xdev -perm +111 -type f \

-exec /usr/bin/md5sum {} \;

USE directives

USE directives are used to provide STEALTH with arguments which may be
conditional to certain installations. The following USE directives are supported:

e USE BASE basedirectory

The BASE specification has no default. BASE defines the directory
from where STEALTH will operate. As this directive has no default it
must be specified. Example:

USE BASE /root/client

e USE DIFF path-to-diff

The DIFF specification defines the location of the program that is used to
compare the log file that’s created during a STEFALTH run to the log file
created by the previous STEALTH run. The example shows its default:

USE DIFF /usr/bin/diff

13

e USE EMAIL address

The EMAIL specification provides one or more (space delimited) email-
addresses receiving the reports of the integrity scans of client.domain.
No mail is sent when no changes were detected with respect to the previous
activation of STEALTH. The example shows its default:

USE EMAIL root

e USE MAILER mnailer
The MAILER specification defines the program that is used to send the
mail to the EM AIL-address. The MAILER program is called as follows:
MATILER MAILARGS EMAIL

(MAILARGS: discussed below). The MAILER program must be able to read
its information from its standard input stream. The example shows its
default:

USE MAILER /usr/bin/mail

e USE MAILARGS arguments
The MAILARGS specification defines the arguments to pass to the
MAILER program. The example shows its default:
USE MAILARGS -s "STEALTH scan report"

Note that blanks may be used in the subject specification, they should,
however, be surrounded by double or single quotes when significant (see
the example).

e USE REPORT reportfile

REPORT defines the name of the report file. Information is always
appended to this file. For each run of STEALTH a time marker line is
written to the report file. Such a marker line looks as follows:

STEALTH (1.11) started at Mon Apr 07 21:57:26 2003

Only when (in addition to the marker line) information was appended to
the report file, the additional contents of the report file are mailed to the
mail address specified in the USE EMAIL specification. The following
example shows its default:

USE REPORT report

e USE SH sh-specification

The SH specification defines the command shell used by the controller to
execute commands on control.domain itself (i.e., local commands). The
example shows its default:

14

USE SH /bin/sh

e USE SSH ssh-specification

The SSH specification has no default. Assuming client.domain
trusts controller.domain (which is, after all, what STEALTH is all
about), this should not be a very strong assumption. Example:

USE SSH rootsh@client.domain -q

When client.domain and control.domain happen to be the same com-
puter, the SSH specification is also required (although this will undo all
benefits offered by STEALTH, of course). An example of an SSH specifi-
cation to scan control.domain itself is:

USE SSH /usr/bin/ssh root@localhost -q

Command specifications

Following the USE specifications, commands are specified. The commands are
executed in their order of appearance in the policy file. Processing continues
until the last command has been processed or until a tested command (see
below) returns a non-zero return value.

LABEL commands

e LABEL text

This defines a text-label which is written to the REPORT file, just before
the output generated by the next CHECK-command.

e LABEL
A LABEL command without text clears a hitherto applied label.

LOCAL commands

Commands to execute on control.domain itself can be specified using LO-
CAL commands. All LOCAL commands are executed through the command
shell specified by the USE SH specification. The following LOCAL commands are
available:

e LOCAL command

This command must succeed (i.e., must return a zero exit value), or
STEALTH will terminate its run. Example:

15

LOCAL scp rootsh@client:/usr/bin/md5sum /tmp

This command will copy the md5sum program from client.domain to the
/tmp directory at control.domain.

¢ LOCAL NOTEST command
This command acts similarly as the previous command, but its return
value is not interpreted. Example:

LOCAL NOTEST mkdir /tmp/subdir

This command will create /tmp/subdir on the controller. The command
will fail if the directory cannot be created, but this will not terminate
STEALTH.

e LOCAL CHECK logfile command

If this command does not succeed (i.e., does not return a zero return value)
the following warning message is written to the report file, but processing
continues:

%% BE CAREFUL *** REMAINING RESULTS MAY BE FORGED

This situation could occur, e.g., if an essential program (like md5sum)
was transferred to control.domain to be integrity checked locally, and
it was found to have been modified since the previous check. Processing
continues, but any remaining checks should be interpreted with extreme
caution. Example:

LOCAL CHECK local/md5sum md5sum /tmp/md5sum

This command will check the MD5 sum of the /tmp/md5sum program. The
resulting output is saved at ${BASE}/local/md5sum. The program must
succeed (i.e., md5sum must return a zero exit-value).

Commands executed at client.domain

Plain commands can be executed on client.domain by merely specifying them.
Such commands are executed on client.domain using the ssh connection spec-

ified by the USE SSH directive.
Commands run on client.domain can be specified as follows:

e command

Here, command is executed on client.domain. The command must suc-
ceed (i.e., must return a zero exit value). Any output generated by the
this command is ignored. Example:

16

/etc/init.d/inetd stop
This command will stop the inetd super-server.

NOTEST command

This command is executed on client.domain, without interpreting its
return value. Example:

NOTEST /etc/init.d/inetd stop

Same as the previous command, but this time the exit value of the com-
mand is not interpreted.

CHECK logfile command

This command is executed on client.domain. Again, the command must
return a zero return value. The output of this command, however, is
compared to the output of this command generated during the previous
run of STEALTH. Any differences are written to the report file.

Please note that the command is executed on client.domain, while the
logfile is kept on control.domain. This command represents the core of
the philosophy implemented in STEALTH : once the command has been
completed, there will be no residues on client.domain. Here are some
examples of this type of command:

CHECK remote/ls.root /usr/bin/find / \
-xdev -perm +6111 -type f -exec /bin/ls -1 {} \;

All suid/gid/executable files on the same device as the root-directory (/)
on client.domain are produced, showing their permissions, owner and
size information. The log file ${BASE}/remote/ls.root will contain the
resulting listing.

Another example:

DEFINE MD5SUM -xdev -perm +6111 -type f \
-exec /usr/bin/md5sum {} \;
CHECK remote/md5.root /usr/bin/find / ${MD5SUM}

The MD5 checksums of all suid/gid/executable files on the same device as
the root-directory (/) on client.domain are determined. The resulting
listing is written to the file ${BASE}/remote/md5.root.

17

e NOTEST CHECK 1logfile command

This command is executed on client.domain. The return value of this
command is not interpreted. Apart from this, the specification is handled
identically as the CHECK logfile command type of command, discussed
before. Example:

NOTEST CHECK remote/md5.root /usr/bin/find / ${MD5SUM}

The MD5 checksums of all suid/gid/executable files on the same device as
the root-directory (/) on client.domain are determined. The resulting
listing is written on the file ${BASE}/remote/md5.root. Using this com-
mand, STEALTH will not terminate if /usr/bin/find program returns
a non-zero exit value.

References

Aide: Advanced intrusion detection environment.
(http://www.cs.tut.fi/ “rammer/aide-0.7.tar.gz).

Fcheck: a script providing host intrusion detection and policy enforcement on
servers.
(http://sites.netscape.net/fcheck/).

Filetraq: a script comparing a list of system files with copies kept.
(http://filetraq.xidus.net/).

Hontandn (2001): Linuz Security, ISBN 0-7821-2741-X, Sybex, London.

Garfinkel and Spafford (1996): Practical Unixz & Internet Security, ISBN
1-56592-148-8, O’Reilly, Cambridge.

OsirisScripts: scripts for generating a catalog of MD5 hashes and comparing
the catalog to new snapshots.
(http://www.shmoo.com/osiris/).

Sans: The SANS (SysAdmin, Audit, Network, Security) Institute.
(http://www.sans.org).

Sentinel: a scanning utility similar to Tripwire.
(http://zurk.netpedia.net/zfile.html).

Sherpa: a script for configuring and then checking system security.
(http://www.nbank.net/ rick/sherpa/).

SSH: establishing a secure shell connection between computers.
(http://www.openssh.com).

18

STEALTH: SSH-based Trust Enhancement Acquired through a Locally Trusted
Host.
(ftp://ftp.rug.nl/contrib/frank/software/linux/stealth/).

Tripwire: a policy driven file system integrity checking tool.
(http://www.tripwire.com).

19

